Laboratoire de Physique des Plasmas LESIA-Observatoire de Paris   (Updated: August 29 2017 12:27 UT)

DataBase of 1D Solar Wind model calculations by VP code

The VP database provides access to numerical results obtained via a 1D Solar Wind hydrodynamical code named VP which computes the density, bulk speed, ion and electron temperatures and pressures, as well as the wave pressure. The numerical domain extends from the photosphere at T=6000K up to 30 solar radii for fast calculations, but can be extended to larger distances. The main control parameters are the mechanical heat flux and the magnetic field expansion rate. A graphic calculator for the standard isothermal wind is available here.
This page provides the ability to plot or retrieve calculation results listed below in the drop-down lists.
Runs on demand are also proposed. (see details)

NB 1: JavaScript must be enabled on your browser !
NB 2: Connection will fail if you are behind a firewall not allowing access through port 7778 (e.g. on some Wireless Networks)


*Select action Plot data Get data Show parameters      
*Choose RUN to show parameters


*Choose up to four RUNS for plots 2,3
Run 1:
Run 2:
Run 3:
Run 4:

*Choose fields for plots 1
Plot 1:
Y-axis Scale: Log(10)
min value max value
Plot 2:
Y-axis Scale: Log(10)
min value max value
Plot 3:
Y-axis Scale: Log(10)
min value max value
Plot 4:
Y-axis Scale: Log(10)
min value max value
     X-axis Scale: min value max value

1 – List of fields [default cgs Units]
Br  radial magnetic field [G] 
fluxtube area A(r)=B(r0)/B(r) 
fexp  Overexpansion rate f=A(r)/(r/r0)² 
Density [1e8 cm-3] 
nUA  number flux density × Area [s-¹] 
n nU  n [cm-3] nU [1e8 cm-2 s-1] 
Flow speed [km/s] 
Va  Alfven speed [km/s] 
Cs  sound speed [km/s] 
du  Alfven wave amplitude [km/s] 
U T_i  U [100 km/s] T_i [1MK] 
U Cs Va  [100 km/s] 
T_i  Temperature [MK] 
T_e  Temperature [MK] 
T_i T_e  [MK] 
Pg  total gas pressure [cgs] 
Pw  Wave pressure [cgs] 
du Va  [km/s] 
A×F_mec  Mechanical energy flux × Area [cgs] 
A×F_K  Kinetic energy flux × Area [cgs] 
A×F_G  Gravitational energy flux × Area [cgs] 
A×F_H  Enthalpy flux × Area [cgs] 
A×F_w  Wave energy flux (3U+2Va) P_w × Area [cgs] 
Nota Bene
1. This list can be enriched easily, please tell us which fields (or combination of fields) you would like to appear here
2. Display errors to be corrected soon:
- when T_i and T_e differ, the mechanical energy flux and the enthalpy flux for electrons is not included
2 – Run parameters
  
Magnetic field
 B0 
photospheric magnetic field [G]
 db 
rms photospheric Alfvén wave amplitude [G]
 ν 
tubeflux area as Rν
 f1 f2 
tubeflux area as Kopp-Holzer, super-radial expansion factor f1*f2
  
Mechanical energy flux at photosphere
 F_MH0 H 
Mechanical main (exponential) energy flux [cgs], scale heigth H [R_s]
 F_Mh0 h 
Mec. secondary (exponential) energy flux [cgs], scale heigth h [R_s]
 F_Mμ0 μ 
Mec. (non exponential) energy flux [cgs], scaling as B^μ
3 – List of available RUNS
 ry1a0 
F_MH0=4.e5 H=1. nu=2. fig1 Pintoetal2009
 ry1b0 
F_MH0=8.e5 H=1. nu=2. fig1 Pintoetal2009
 ry1c0 
F_MH0=8.e5 H=1. nu=3. fig1 Pintoetal2009
 ry1d0 
F_MH0=8.e5 H=.5 nu=3. fig1 Pintoetal2009
 ry2a 
F_Mμ0=8e5 mu=3./2. nu=2. fig2 Pintoetal2009
 ry2b 
F_Mμ0=8e5 mu=3./2. nu=3. fig2 Pintoetal2009
 ry2c 
F_Mμ0=8e5 mu=3./2. nu=4. fig2 Pintoetal2009
 ry2d 
F_Mμ0=8e5 mu=3./2. nu=5. fig2 Pintoetal2009
 ry3aii 
F_Mμ0=1e5 mu=3./2. nu=2. fig3 Pintoetal2009
 ry4aii 
F_Mμ0=8e5 mu=3./2. nu=10. fig4 Pintoetal2009
 ry5a2 
F_MH0=4e5 H=.05 F_Mμ0=4e5 mu=3./2. nu=2. fig5-8 Pintoetal2009
 ry6a2 
F_Mμ0=4e5 mu=3./2. nu=2. fig5-8 Pintoetal2009
 new_f4iia_25f 
F_MH0=5.e5 H=1. F_Mh0=4.e5 h=0.01 nu=4. fig1 Grappinetal2011
 new_fic_25ff 
F_MH0=5.e5 H=1. nu=4. fig1 Grappinetal2011
 new_f5b_25f 
F_MH0=2.5e5 H=1. F_Mh0=2.e5 h=0.01 nu=4. fig2-3 Grappinetal2011
 new_f4a_25f 
F_MH0=2.5e5 H=1. nu=4. fig2 Grappinetal2011
 new_f2a_25f 
F_MH0=2.5e5 H=1. F_Mh0=2.e5 h=0.025 nu=4. fig3 Grappinetal2011
 new_f4a2d_25f 
F_MH0=2.5e5 H=2. F_Mh0=2.e5 h=0.01 nu=4. fig4 Grappinetal2011
 new_f4a2_25f 
F_MH0=2.5e5 H=2. nu=4. fig4 Grappinetal2011
 new_h5b_25f 
F_MH0=2.5e5 H=1. F_Mh0=2.e5 h=0.01 nu=2. fig5 Grappinetal2011
 new_f5c_25f 
F_MH0=2.5e5 H=1. F_Mh0=2.e5 h=0.01 nu=5. fig5 Grappinetal2011
 w2 
B0=100. db=0. F_MH0=10*8.e5 H=1. f1=10 f2=7. Strong expansion Wind formation 1
 w2a 
B0=100. db=0. F_MH0=10*8.e5 H=1. f1=10 f2=7. Strong expansion Wind formation 2
 w2b 
B0=100. db=0. F_MH0=10*8.e5 H=1. f1=10. f2=7. Strong expansion Slow Wind
 w2b1 
B0=100. db=30. F_MH0=10*8.e5 H=1. f1=10. f2=7. Strong expansion Fast Wind
 A283 
F_Mμ0=8.e5 mu=3./2. nu=2.83 fig11 Wangetal2012
 A476 
F_Mμ0=8.e5 mu=3./2. nu=4.76 fig11 Wangetal2012
 An3 
F_Mμ0=8.e5 mu=3./2. nu=7. Rx=1.1 fig11 Wangetal2012
 An4 
F_Mμ0=8.e5 mu=3./2. nu=7. Rx=1.5 fig11 Wangetal2012
Nota Bene
1. Series ryxx: T_i = T_e
2. Series newxx: T_i and T_e differ
3. Series wxx: few examples with strong expansion
4. Note only run w2b1 has non zero wave pressure !
5. Most runs are quasi-stationary, but not all. This can be checked by examining the integrated number flux density nUA.

If you have any questions/comments about the VP database, contact:

Roland Grappin, Ecole Polytechnique, LPP, 91128 Palaiseau
Filippo Pantellini, Observatoire de Paris, LESIA, 92195 Meudon

© Observatoire de Paris & Laboratoire de Physique des Plasmas

Valid HTML 4.01 Transitional